A Multi-objective Exploratory Procedure for Regression Model Selection
نویسندگان
چکیده
Variable selection is recognized as one of the most critical steps in statistical modeling. The problems encountered in engineering and social sciences are commonly characterized by overabundance of explanatory variables, non-linearities and unknown interdependencies between the regressors. An added difficulty is that the analysts may have little or no prior knowledge on the relative importance of the variables. To provide a robust method for model selection, this paper introduces the Multi-objective Genetic Algorithm for Variable Selection (MOGA-VS) that provides the user with an optimal set of regression models for a given data-set. The algorithm considers the regression problem as a two objective task, and explores the Pareto-optimal (best subset) models by preferring those models over the other which have less number of regression coefficients and better goodness of fit. The model exploration can be performed based on insample or generalization error minimization. The model selection is proposed to be performed in two steps. First, we generate the frontier of Pareto-optimal regression models by eliminating the dominated models without any user intervention. Second, a decision making process is executed which allows the user to choose the most preferred model using visualizations and simple metrics. The method has been evaluated on a recently published real dataset on Communities and Crime within United States.
منابع مشابه
Efficient Selection of Design Parameters in Multi-Objective Economic-Statistical Model of Attribute C Control Chart
Control chart is the most well-known chart to monitor the number of nonconformities per inspection unit where each sample consists of constant size. Generally, the design of a control chart requires determination of sample size, sampling interval, and control limits width. Optimally selecting these parameters depends on several process parameters, which have been considered from statistical and...
متن کاملA Multi-objective Mathematical Model for Sustainable Supplier Selection and Order Lot-Sizing under Inflation
Recently, scholars and practitioners have shown an increased interest in the field of sustainable supplier selection and order lot-sizing. While several studies have recently carried out on this field, far too little attention has been given to formulating a multi-objective model for the integrated problem of multi-period multi-product order lot-sizing and sustainable supplier selection under i...
متن کاملDeveloping a multi objective possibilistic programming model for portfolio selection problem
Portfolio selection problem is one of the most important issues in the area of financial management in which is attempted to allocate wealth to different assets with controlling the return and risk. The aim of this paper is to obtain the optimum portfolio with regard to the cardinality and threshold constraints. In the paper, a novel multi-objective possibilistic programming model is developed ...
متن کاملA Fuzzy Approach For Multi-Objective Supplier Selection
Assessment and selection of suppliers are two most important tasks in the purchasing part in supply chain management. Supplier selection can be considered to be a single or multi-objective problem. From another point of view, it can be a single or multi-sourcing problem. In this paper, an integrated AHP and Fuzzy TOPSIS model is proposed to solve the supplier selection problem. This model makes...
متن کاملA Fuzzy Goal Programming Model for Efficient Portfolio Selection.
This paper considers a multi-objective portfolio selection problem imposed by gaining of portfolio, divided yield and risk control in an ambiguous investment environment, in which the return and risk are characterized by probabilistic numbers. Based on the theory of possibility, a new multi-objective portfolio optimization model with gaining of portfolio, divided yield and risk control is propo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012